
Package: KPC (via r-universe)
August 22, 2024

Type Package

Title Kernel Partial Correlation Coefficient

Version 0.1.2

Maintainer Zhen Huang <zh2395@columbia.edu>

Description Implementations of two empirical versions the kernel
partial correlation (KPC) coefficient and the associated
variable selection algorithms. KPC is a measure of the strength
of conditional association between Y and Z given X, with X, Y,
Z being random variables taking values in general topological
spaces. As the name suggests, KPC is defined in terms of
kernels on reproducing kernel Hilbert spaces (RKHSs). The
population KPC is a deterministic number between 0 and 1; it is
0 if and only if Y is conditionally independent of Z given X,
and it is 1 if and only if Y is a measurable function of Z and
X. One empirical KPC estimator is based on geometric graphs,
such as K-nearest neighbor graphs and minimum spanning trees,
and is consistent under very weak conditions. The other
empirical estimator, defined using conditional mean embeddings
(CMEs) as used in the RKHS literature, is also consistent under
suitable conditions. Using KPC, a stepwise forward variable
selection algorithm KFOCI (using the graph based estimator of
KPC) is provided, as well as a similar stepwise forward
selection algorithm based on the RKHS based estimator. For more
details on KPC, its empirical estimators and its application on
variable selection, see Huang, Z., N. Deb, and B. Sen (2022).
“Kernel partial correlation coefficient – a measure of
conditional dependence” (URL listed below). When X is empty,
KPC measures the unconditional dependence between Y and Z,
which has been described in Deb, N., P. Ghosal, and B. Sen
(2020), “Measuring association on topological spaces using
kernels and geometric graphs” <arXiv:2010.01768>, and it is
implemented in the functions KMAc() and Klin() in this package.
The latter can be computed in near linear time.

License GPL-3

Encoding UTF-8

1

https://arxiv.org/abs/2010.01768

2 ElecData

URL https://www.jmlr.org/papers/v23/21-493.html,

https://arxiv.org/abs/2012.14804

LazyData true

RoxygenNote 7.2.3

Depends R (>= 4.0.0), data.table, kernlab

Imports RANN, proxy, parallel, mlpack

Repository https://zh2395.r-universe.dev

RemoteUrl https://github.com/zh2395/kpc

RemoteRef HEAD

RemoteSha 6837458dad83c12e3e76e627f516daa039caa5b1

Contents
ElecData . 2
KFOCI . 3
Klin . 4
KMAc . 6
KPCgraph . 7
KPCRKHS . 8
KPCRKHS_VS . 10
med . 11
TnKnn . 12

Index 13

ElecData 2017 Korea presidential election data

Description

A dataset containing 9 variables, consists of the voting results earned by the top five candidates
from 250 electoral districts in Korea.

Usage

ElecData

Format

A data frame with 1250 rows and 9 variables:

PrecinctCode 250 precinct codes designated by the election committee (4 digits)

CityCode 250 city codes of administrative standard code management system (5 digits)

https://www.jmlr.org/papers/v23/21-493.html
https://arxiv.org/abs/2012.14804

KFOCI 3

CandidateName Symbols 1-5, corresponding to Moon Jae-in, Hong Jun-pyo, Ahn Cheol-soo, Yoo
Seung-min, Shim Sang-jung

AveAge Average age of voters in 17 years: statistics on resident registration population of the
Ministry of Government Administration and Home Affairs

AveYearEdu Average number of years of education for voters

AveHousePrice Average price per square meter in 17 years

AveInsurance The average insurance premium for each city, county, district

VoteRate Vote rate by candidate

NumVote Number of votes by candidate

Source

https://github.com/OhmyNews/2017-Election

KFOCI Kernel Feature Ordering by Conditional Independence

Description

Variable selection with KPC using directed K-NN graph or minimum spanning tree (MST)

Usage

KFOCI(
Y,
X,
k = kernlab::rbfdot(1/(2 * stats::median(stats::dist(Y))^2)),
Knn = min(ceiling(NROW(Y)/20), 20),
num_features = NULL,
stop = TRUE,
numCores = parallel::detectCores(),
verbose = FALSE

)

Arguments

Y a matrix of responses (n by dy)

X a matrix of predictors (n by dx)

k a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab
e.g., Gaussian kernel: rbfdot(sigma = 1), linear kernel: vanilladot().

Knn a positive integer indicating the number of nearest neighbor; or "MST". The
suggested choice of Knn is 0.05n for samples up to a few hundred observations.
For large n, the suggested Knn is sublinear in n. That is, it may grow slower than
any linear function of n. The computing time is approximately linear in Knn. A
smaller Knn takes less time.

https://github.com/OhmyNews/2017-Election

4 Klin

num_features the number of variables to be selected, cannot be larger than dx. The default
value is NULL and in that case it will be set equal to dx. If stop == TRUE (see
below), then num_features is the maximal number of variables to be selected.

stop If stop == TRUE, then the automatic stopping criterion (stops at the first instance
of negative Tn, as mentioned in the paper) will be implemented and continued
till num_features many variables are selected. If stop == FALSE then exactly
num_features many variables are selected.

numCores number of cores that are going to be used for parallelizing the process.

verbose whether to print each selected variables during the forward stepwise algorithm

Details

A stepwise forward selection of variables using KPC. At each step it selects the Xj that maxi-
mizes ρ̂2(Y,Xj |selected Xi). It is suggested to normalize the predictors before applying KFOCI.
Euclidean distance is used for computing the K-NN graph and the MST.

Value

The algorithm returns a vector of the indices from 1,...,dx of the selected variables in the same order
that they were selected. The variables at the front are expected to be more informative in predicting
Y.

See Also

KPCgraph, KPCRKHS, KPCRKHS_VS

Examples

n = 200
p = 10
X = matrix(rnorm(n * p), ncol = p)
Y = X[, 1] * X[, 2] + sin(X[, 1] * X[, 3])
KFOCI(Y, X, kernlab::rbfdot(1), Knn=1, numCores=1)
1 2 3

Klin A near linear time analogue of KMAc

Description

Calculate η̂lin
n (the unconditional version of graph-based KPC) using directed K-NN graph or min-

imum spanning tree (MST). The computational complexity is O(nlog(n))

Klin 5

Usage

Klin(
Y,
X,
k = kernlab::rbfdot(1/(2 * stats::median(stats::dist(Y))^2)),
Knn = 1

)

Arguments

Y a matrix of response (n by dy)

X a matrix of predictors (n by dx)

k a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab
e.g. rbfdot(sigma = 1), vanilladot()

Knn the number of K-nearest neighbor to use; or "MST". A small Knn (e.g., Knn=1)
is recommended.

Details

η̂n is an estimate of the population kernel measure of association, based on data {(Xi, Yi)}ni=1 from
µ. For K-NN graph, η̂n can be computed in near linear time (in n). In particular,

η̂lin
n :=

n−1
∑n

i=1 d
−1
i

∑
j:(i,j)∈E(Gn)

k(Yi, Yj)− (n− 1)−1
∑n−1

i=1 k(Yi, Yi+1)

n−1
∑n

i=1 k(Yi, Yi)− (n− 1)−1
∑n−1

i=1 k(Yi, Yi+1)

, where all symbols have their usual meanings as in the definition of η̂n. Euclidean distance is used
for computing the K-NN graph and the MST.

Value

The algorithm returns a real number ‘Klin’: an empirical kernel measure of association which can
be computed in near linear time when K-NN graphs are used.

References

Deb, N., P. Ghosal, and B. Sen (2020), “Measuring association on topological spaces using kernels
and geometric graphs” <arXiv:2010.01768>.

See Also

KPCgraph, KMAc

Examples

library(kernlab)
Klin(Y = rnorm(100), X = rnorm(100), k = rbfdot(1), Knn = 1)

6 KMAc

KMAc KMAc (the unconditional version of graph-based KPC) with geomet-
ric graphs.

Description

Calculate η̂n (the unconditional version of graph-based KPC) using directed K-NN graph or mini-
mum spanning tree (MST).

Usage

KMAc(
Y,
X,
k = kernlab::rbfdot(1/(2 * stats::median(stats::dist(Y))^2)),
Knn = 1

)

Arguments

Y a matrix of response (n by dy)
X a matrix of predictors (n by dx)
k a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab

e.g., Gaussian kernel: rbfdot(sigma = 1), linear kernel: vanilladot()
Knn the number of K-nearest neighbor to use; or "MST". A small Knn (e.g., Knn=1)

is recommended for an accurate estimate of the population KMAc.

Details

η̂n is an estimate of the population kernel measure of association, based on data {(Xi, Yi)}ni=1 from
µ. For K-NN graph, ties will be broken at random. MST is found using package emstreeR. In
particular,

η̂n :=
n−1

∑n
i=1 d

−1
i

∑
j:(i,j)∈E(Gn)

k(Yi, Yj)− (n(n− 1))−1
∑

i ̸=j k(Yi, Yj)

n−1
∑n

i=1 k(Yi, Yi)− (n(n− 1))−1
∑

i ̸=j k(Yi, Yj)
,

where Gn denotes a MST or K-NN graph on X1, . . . , Xn, E(Gn) denotes the set of edges of Gn

and (i, j) ∈ E(Gn) implies that there is an edge from Xi to Xj in Gn. Euclidean distance is used
for computing the K-NN graph and the MST.

Value

The algorithm returns a real number ‘KMAc’, the empirical kernel measure of association

References

Deb, N., P. Ghosal, and B. Sen (2020), “Measuring association on topological spaces using kernels
and geometric graphs” <arXiv:2010.01768>.

KPCgraph 7

See Also

KPCgraph, Klin

Examples

library(kernlab)
KMAc(Y = rnorm(100), X = rnorm(100), k = rbfdot(1), Knn = 1)

KPCgraph Kernel partial correlation with geometric graphs

Description

Calculate the kernel partial correlation (KPC) coefficient with directed K-nearest neighbor (K-NN)
graph or minimum spanning tree (MST).

Usage

KPCgraph(
Y,
X,
Z,
k = kernlab::rbfdot(1/(2 * stats::median(stats::dist(Y))^2)),
Knn = 1,
trans_inv = FALSE

)

Arguments

Y a matrix (n by dy)

X a matrix (n by dx) or NULL if X is empty

Z a matrix (n by dz)

k a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab
e.g., Gaussian kernel: rbfdot(sigma = 1), linear kernel: vanilladot().

Knn a positive integer indicating the number of nearest neighbor to use; or "MST".
A small Knn (e.g., Knn=1) is recommended for an accurate estimate of the pop-
ulation KPC.

trans_inv TRUE or FALSE. Is k(y, y) free of y?

Details

The kernel partial correlation squared (KPC) measures the conditional dependence between Y and
Z given X , based on an i.i.d. sample of (Y,Z,X). It converges to the population quantity (depend-
ing on the kernel) which is between 0 and 1. A small value indicates low conditional dependence
between Y and Z given X , and a large value indicates stronger conditional dependence. If X ==
NULL, it returns the KMAc(Y,Z,k,Knn), which measures the unconditional dependence between Y

8 KPCRKHS

and Z. Euclidean distance is used for computing the K-NN graph and the MST. MST in practice
often achieves similar performance as the 2-NN graph. A small K is recommended for the K-NN
graph for an accurate estimate of the population KPC, while if KPC is used as a test statistic for
conditional independence, a larger K can be beneficial.

Value

The algorithm returns a real number which is the estimated KPC.

See Also

KPCRKHS, KMAc, Klin

Examples

library(kernlab)
n = 2000
x = rnorm(n)
z = rnorm(n)
y = x + z + rnorm(n,1,1)
KPCgraph(y,x,z,vanilladot(),Knn=1,trans_inv=FALSE)

n = 1000
x = runif(n)
z = runif(n)
y = (x + z) %% 1
KPCgraph(y,x,z,rbfdot(5),Knn="MST",trans_inv=TRUE)

discrete_ker = function(y1,y2) {
if (y1 == y2) return(1)
return(0)

}
class(discrete_ker) <- "kernel"
set.seed(1)
n = 2000
x = rnorm(n)
z = rnorm(n)
y = rep(0,n)
for (i in 1:n) y[i] = sample(c(1,0),1,prob = c(exp(-z[i]^2/2),1-exp(-z[i]^2/2)))
KPCgraph(y,x,z,discrete_ker,1)
##0.330413

KPCRKHS Kernel partial correlation with RKHS method

Description

Compute estimate of Kernel partial correlation (KPC) coefficient using conditional mean embed-
dings in the reproducing kernel Hilbert spaces (RKHS).

KPCRKHS 9

Usage

KPCRKHS(
Y,
X = NULL,
Z,
ky = kernlab::rbfdot(1/(2 * stats::median(stats::dist(Y))^2)),
kx = kernlab::rbfdot(1/(2 * stats::median(stats::dist(X))^2)),
kxz = kernlab::rbfdot(1/(2 * stats::median(stats::dist(cbind(X, Z)))^2)),
eps = 0.001,
appro = FALSE,
tol = 1e-05

)

Arguments

Y a matrix (n by dy)

X a matrix (n by dx) or NULL if X is empty

Z a matrix (n by dz)

ky a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab
e.g., Gaussian kernel: rbfdot(sigma = 1), linear kernel: vanilladot().

kx the kernel function for X

kxz the kernel function for (X,Z) or for Z if X is empty

eps a small positive regularization parameter for inverting the empirical cross-covariance
operator

appro whether to use incomplete Cholesky decomposition for approximation

tol tolerance used for incomplete Cholesky decomposition (implemented by the
function inchol in the package kernlab)

Details

The kernel partial correlation (KPC) coefficient measures the conditional dependence between Y
and Z given X , based on an i.i.d. sample of (Y,Z,X). It converges to the population quantity
(depending on the kernel) which is between 0 and 1. A small value indicates low conditional
dependence between Y and Z given X , and a large value indicates stronger conditional dependence.
If X = NULL, it measures the unconditional dependence between Y and Z.

Value

The algorithm returns a real number which is the estimated KPC.

See Also

KPCgraph

10 KPCRKHS_VS

Examples

n = 500
set.seed(1)
x = rnorm(n)
z = rnorm(n)
y = x + z + rnorm(n,1,1)
library(kernlab)
k = vanilladot()
KPCRKHS(y, x, z, k, k, k, 1e-3/n^(0.4), appro = FALSE)
0.4854383 (Population quantity = 0.5)
KPCRKHS(y, x, z, k, k, k, 1e-3/n^(0.4), appro = TRUE, tol = 1e-5)
0.4854383 (Population quantity = 0.5)

KPCRKHS_VS Variable selection with RKHS estimator

Description

The algorithm performs a forward stepwise variable selection using RKHS estimators.

Usage

KPCRKHS_VS(
Y,
X,
num_features,
ky = kernlab::rbfdot(1/(2 * stats::median(stats::dist(Y))^2)),
kS = NULL,
eps = 0.001,
appro = FALSE,
tol = 1e-05,
numCores = parallel::detectCores(),
verbose = FALSE

)

Arguments

Y a matrix of responses (n by dy)

X a matrix of predictors (n by dx)

num_features the number of variables to be selected, cannot be larger than dx.

ky a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab
e.g., Gaussian kernel: rbfdot(sigma = 1), linear kernel: vanilladot()

kS a function that takes X and a subset of indices S as inputs, and then outputs the
kernel for X_S. The first argument of kS is X, and the second argument is a vec-
tor of positive integer. If kS == NULL, Gaussian kernel with empitical bandwidth
kernlab::rbfdot(1/(2*stats::median(stats::dist(X[,S]))^2)) will be
used.

med 11

eps a positive number; the regularization parameter for the RKHS estimator

appro whether to use incomplete Cholesky decomposition for approximation

tol tolerance used for incomplete Cholesky decomposition (inchol in package kernlab)

numCores number of cores that are going to be used for parallelizing the process.

verbose whether to print each selected variables during the forward stepwise algorithm

Details

A stepwise forward selection of variables using KPC. At each step it selects the Xj that maximizes
ρ̃2(Y,Xj |selected Xi). It is suggested to normalize the features before applying the algorithm.

Value

The algorithm returns a vector of the indices from 1,...,dx of the selected variables in the same
order that they were selected. The variables at the front are expected to be more informative in
predicting Y.

See Also

KPCgraph, KPCRKHS, KFOCI

Examples

n = 200
p = 10
X = matrix(rnorm(n * p), ncol = p)
Y = X[, 1] * X[, 2] + sin(X[, 1] * X[, 3])
library(kernlab)
kS = function(X,S) return(rbfdot(1/length(S)))
KPCRKHS_VS(Y, X, num_features = 3, rbfdot(1), kS, eps = 1e-3, appro = FALSE, numCores = 1)
kS = function(X,S) return(rbfdot(1/(2*stats::median(stats::dist(X[,S]))^2)))
KPCRKHS_VS(Y, X, num_features = 3, rbfdot(1), kS, eps = 1e-3, appro = FALSE, numCores = 1)

med Medical data from 35 patients

Description

A dataset containing three variables (creatinine clearance C; digoxin clearance D; urine flow U)
from 35 patients.

Usage

med

12 TnKnn

Format

A data frame with 35 rows and 3 variables:

C creatinine clearance, in ml/min/1.73m^2

D digoxin clearance, in ml/min/1.73m^2

U urine flow, in ml/min

Source

Edwards, D. (2012). Introduction to graphical modelling, Section 3.1.4, Springer Science & Busi-
ness Media.

TnKnn Tn with geometric graphs

Description

Calculate Tn using directed K-NN graph or minimum spanning tree (MST).

Usage

TnKnn(Y, X, k, Knn = 1)

Arguments

Y a matrix of response (n by dy)

X a matrix of predictors (n by dx)

k a function k(y, y′) of class kernel. It can be the kernel implemented in kernlab
e.g. Gaussian kernel: rbfdot(sigma = 1), linear kernel: vanilladot().

Knn the number of K-nearest neighbor to use; or "MST".

Details

Tn is an estimate of E[E[k(Y1, Y
′
1)|X]], with Y1, Y ′

1 drawn iid from Y |X , given X . For K-NN
graph, ties will be broken at random. Algorithm finding the MST is implemented the package
emstreeR.

Value

The algorithm returns a real number which is the value of Tn.

Index

∗ datasets
ElecData, 2
med, 11

ElecData, 2

KFOCI, 3, 11
Klin, 4, 7, 8
KMAc, 5, 6, 8
KPCgraph, 4, 5, 7, 7, 9, 11
KPCRKHS, 4, 8, 8, 11
KPCRKHS_VS, 4, 10

med, 11

TnKnn, 12

13

	ElecData
	KFOCI
	Klin
	KMAc
	KPCgraph
	KPCRKHS
	KPCRKHS_VS
	med
	TnKnn
	Index

